200=(3x)(3.14x^2)

Simple and best practice solution for 200=(3x)(3.14x^2) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 200=(3x)(3.14x^2) equation:



200=(3x)(3.14x^2)
We move all terms to the left:
200-((3x)(3.14x^2))=0
We calculate terms in parentheses: -(3x(3.14x^2)), so:
3x(3.14x^2)
We multiply parentheses
9x^2
Back to the equation:
-(9x^2)
a = -9; b = 0; c = +200;
Δ = b2-4ac
Δ = 02-4·(-9)·200
Δ = 7200
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{7200}=\sqrt{3600*2}=\sqrt{3600}*\sqrt{2}=60\sqrt{2}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-60\sqrt{2}}{2*-9}=\frac{0-60\sqrt{2}}{-18} =-\frac{60\sqrt{2}}{-18} =-\frac{10\sqrt{2}}{-3} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+60\sqrt{2}}{2*-9}=\frac{0+60\sqrt{2}}{-18} =\frac{60\sqrt{2}}{-18} =\frac{10\sqrt{2}}{-3} $

See similar equations:

| 5=12+k7 | | 5(2d+4)-5=35 | | 4-x-7(x-2)=-6 | | 4(2.2d-1=22.4 | | 4x-50=5-7x | | (X^2)+(5x)+6=0 | | -3p-1=-(1+3p) | | 157+14x+3=4x+10 | | (8x-15)1/5=2 | | 2x+17=-3/4x-6 | | 2-2-3x=4x-7x | | -2(w-10)=-50 | | 12+4x=9-3x | | 2k+3k=-10 | | -13+7=-3(x+6) | | -7(x+2)=-67 | | 3/y-6=-11 | | 6x+9-1x=1x-23 | | x+x+2=3x=31 | | xx6=2 | | -6+14=128x | | 17n+11=n | | 10x+11(1-x)=10.811 | | -5h-4=-9h | | 11=3-8x | | -8+12x=20 | | -70/7=x | | 4^2+3^2-2^2=b | | 3(+5)+3x+1=-32 | | -21=12c-11 | | 12x-152=96+4x | | -2(w-10)=-3 |

Equations solver categories